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M ultiple sclerosis (MS) is a chronic central nervous sys-
tem (CNS) inflammatory demyelinating disease,1 involv-
ing both genetic and environmental factors. Its pathol-

ogy is characterized by focal white and gray matter lesions with
myelin, oligodendrocyte, and neuroaxonal loss2; the latter is thought
to be responsible for irreversible accumulation of disability.3

There is excitement in MS therapeutics as new disease-
modifying treatments (DMTs) are rapidly becoming available. How-
ever, some of this enthusiasm is tempered by risks engendered by
certain newer agents. To optimally manage patients who may use
these DMTs, it is important to understand and relate the DMTs’
mechanisms of action (MOAs) to benefits and potential safety risks.
The first DMTs, interferon beta and glatiramer acetate, reduce risk
of new attacks and are generally well tolerated and safe. While ac-
tivity of these agents was originally attributed to their influence on
T cells, it now appears these drugs also influence innate immunity.4,5

Although potentially more effective and convenient, recent DMTs
have been associated with risks of potentially serious adverse events
(AEs), altering risk to benefit ratios. Consequently, treatment deci-
sions have become more complex and require detailed informa-
tion regarding drug properties.6 For many reasons, understanding
risks associated with novel treatments is imperfect: (1) data col-
lected during preclinical development are limited and extrapola-
tion from animal to humans can be unreliable; (2) clinical studies of-
ten recruit insufficient patients to detect less common AEs, recruit
highly selected patients, and may be too short to detect AEs that
appear only after prolonged exposure; and (3) identifying causal re-

lationships between treatment and an AE may be difficult. Safety
issues are identified after approval for around one-quarter of phar-
maceutical treatments.7

While AEs often represent unwanted pharmacological re-
sponses related to MOA, some are idiosyncratic.8 Some newer thera-
pies (eg, rituximab, alemtuzumab, BG-12, teriflunomide) also repre-
sent repurposing or modifications of previous treatments used in
other diseases. Identifying and understanding AEs observed with
other members of the same class, or with use of the same drug in
other populations, can provide clues regarding safety and toxicities.

Herein, the safety profile of DMTs for MS is reviewed from the
perspective of their molecular targets, chemical structure, MOA, and
metabolism. As first-generation therapies glatiramer acetate and in-
terferon beta present few, well-defined safety issues that have been
described previously,9 these medications are not discussed. In-
stead, we focus on more recently approved therapies and those in
late-stage clinical development. They are grouped into 4 catego-
ries based on their presumed target or MOA: (1) immune cell traf-
ficking; (2) cell depletion; (3) immune cell function; and (4) cell rep-
lication (Table). Better understanding of these properties should
assist physicians when choosing such therapies.

Search Strategy and Selection Criteria
References for this review were identified through searches of
PubMed with the following key words: drug name (chemical and
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brand name), mode of action, specific adverse effects, major me-
tabolites, and clinical trials. The search was initially conducted Au-
gust 14, 2012. Articles were also identified through searches of the
authors’ own files. Only articles published in English were re-
viewed. The final reference list was generated on the basis of origi-
nality and relevance to the broad scope of this review.

DMTs Inhibiting Immune Cell Trafficking
Acute focal CNS inflammation is triggered, particularly at early stages
of disease, by influx of activated lymphocytes across the blood-
brain barrier. Two types of treatment that impede lymphocyte
migration have been developed and are currently licensed. These
treatments prevent activated immune cells from crossing the blood-
brain barrier into the CNS (natalizumab) or from exiting lymph nodes
into the circulation (fingolimod). While these therapies may offer sub-
stantial efficacy, as a consequence of their MOAs they alter lympho-
cyte distribution, which may influence immune surveillance.

Natalizumab
Natalizumab is a humanized monoclonal antibody (mAb) (Figure 1)
that has demonstrated robust reductions in clinical and radiologi-
cal outcomes in relapsing-remitting MS (RRMS).10,11 Natalizumab is
directed against the α4 subunit of the cell adhesion molecule very

late antigen 4 (VLA-4) expressed on the surface of lymphocytes and
monocytes. Binding of VLA-4 to its receptor, vascular cell adhesion
molecule 1 (VCAM-1), on vascular endothelium is required for trans-
migration of immune cells across the blood-brain barrier. Binding of
α4 integrin is also required for immune cell transmigration into the
gut. After successful testing in Crohn disease, natalizumab was ap-
proved for treatment of this condition.12

Due to blockade of leukocyte migration from blood, natali-
zumab treatment leads to mild leukocyte elevation13 and concomi-
tant lymphocyte reduction in cerebrospinal fluid.14 On treatment dis-
continuation, the cerebrospinal fluid lymphocyte population
reconstitutes within 6 to 12 months.14

The principal safety issue with use of natalizumab is the in-
creased risk of progressive multifocal leukoencephalopathy (PML),15

which can be fatal or result in permanent disability. The risk of PML
became evident shortly after approval of natalizumab. Two patients
in the SENTINEL trial,15,16 which tested addition of natalizumab to
weekly intramuscular interferon beta, developed PML after 28 and
37 infusions. These observations underscored the need to evaluate
treatments for sufficiently long durations and for carefully designed
phase 4 trials. In this regard, measuring duration of therapy may be
more relevant than simply reporting “patient-years” of exposure.

The incidence of PML for patients with MS treated for at least 2
years is 5.05 in 1000 (as of February 2013).17 It may result from re-
activation of JC virus within the CNS or possibly mobilization of pe-
ripheral viral reserves to the CNS.18,19 Three risk factors are recog-
nized for development of PML: evidence of prior JC virus exposure,
duration of natal izumab exposure, and previous use of
immunosuppressants.18 A test to detect serum anti–JC virus anti-
bodies was recently developed and serves as a useful biomarker for
risk stratification in natalizumab treatment. This test should be re-
peated in JC virus–negative patients every 6 months owing to the
annual 1% to 2% seroconversion rate.20 Similarly, a high incidence
of PML (1 in 500 patients) was reported with efalizumab, which was
developed for treatment of psoriasis but later withdrawn. Efali-
zumab is an mAb directed against the adhesion molecule CD11a on
T and B cells, which binds to intercellular adhesion molecule 1
(ICAM-1).21 Thus, this markedly elevated PML risk likely represents
a class effect of these selective adhesion molecule inhibitors.

Table. Categories of Disease-Modifying Treatments for Multiple Sclerosis

Purpose Disease-Modifying Treatment
Inhibit immune cell trafficking Natalizumab

Fingolimod

Promote immune cell depletion Alemtuzumab

Rituximab

Ocrelizumab

Influence immune cell function BG-12

Laquinimod

Daclizumab

Inhibit cell replication Mitoxantrone

Teriflunomide

Figure 1. Classes of Therapeutic Antibodies
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Chimeric and humanized antibodies contain murine se-
quences (Figure 1), which increase their immunogenicity. Use of
mAbs can be associated with infusion reactions and persistent neu-
tralizing antibodies; for natalizumab, neutralizing antibodies are as-
sociated with loss of therapeutic response and increased risk of hy-
persensitivity reactions.22 Recrudescence of disease activity occurs
approximately 3 to 5 months after natalizumab discontinuation and
corresponds to desaturation of VLA-4 binding. In some cases, na-
talizumab discontinuation has been associated with a rebound (over-
shoot) beyond baseline activity and was fatal in 1 case.23-25 Unfor-
tunately, predisposing risk factors for rebound after natalizumab
withdrawal have not been identified.

Fingolimod
Fingolimod (Figure 2) is an oral medication approved for treatment
of RRMS. It has demonstrated superior activity to intramuscular in-
terferon beta-1a.26,27 Fingolimod is a sphingosine-1-phosphate (S1P)
agonist that binds to 4 of the 5 members of the S1P receptor family
(S1P1, S1P2, S1P3, and S1P5). However, following binding and acti-
vation of S1P1 receptors, fingolimod acts as a functional antagonist
and prevents C-C chemokine receptor type 7 (CCR7)–positive lym-
phocytes, including naive and central memory T cells, from exiting
lymph nodes.28 Consequently, lymphopenia occurs within hours of
administration. Because S1P receptors are present on both neu-
rons and glia and fingolimod penetrates the CNS,29 fingolimod may
exert direct CNS effects.28

Few opportunistic infections have been documented in fingo-
limod-treated patients. Two deaths occurred from viral infections
during phase 3 trials testing fingolimod, one from herpes simplex
virus encephalitis and one from disseminated varicella-zoster vi-
rus, although both patients were treated with a higher dose (1.25 mg)
than was approved (0.5 mg). Since approval, there has been 1 re-
ported case of varicella-zoster virus encephalitis at 0.5 mg.30 Cur-
rently, a trial is under way to determine whether 0.25 mg may be
efficacious and pose less risk of viral infection.31 Varicella-zoster vi-
rus vaccination is recommended for patients with no history of chick-
enpox or prior vaccination.32 Viral infections associated with use of
fingolimod are presumably linked to lymphopenia from lympho-
cyte sequestration. Persistent lymphopenia after drug withdrawal
has been observed33 and may also pose concern when considering
initiation of another therapy soon after fingolimod discontinua-
tion. Subtypes of S1P receptors are found in other tissues and may
contribute to AEs associated with fingolimod, notably bradycardia,
dyspnea, and macular edema. For example, S1P3 receptors are found
in cardiac smooth muscle, vascular endothelium, and airways.34 More
selective S1P1 agonists are under development with the aim of elimi-
nating certain AEs such as macular edema, a consequence from bind-
ing retinal S1P2 receptors.35-37

DMTs Producing Immune Cell Depletion

While attention has focused primarily on the role of T cells in MS
pathogenesis, recent successes using B-cell–depleting agents have
provided greater appreciation of the importance of this lympho-
cyte subset. Several mAbs originally developed for treatment of he-
matological malignancies, targeting B and T cells or B cells alone, are
being evaluated for potential use in MS. These antibodies are IgG1
and cause cell depletion.

Alemtuzumab
Alemtuzumab, a humanized mAb (Figure 1) originally developed for
treatment of B-cell chronic lymphocytic leukemia, demonstrated dra-
matic and sustained reductions in relapses and magnetic reso-
nance imaging markers of disease activity in a phase 2 study38 and
in phase 3 studies39,40 vs high-dose interferon.

Alemtuzumab is directed against CD52, a surface glycoprotein
present on several mature leukocyte subpopulations, including T, B,
and natural killer cells.38 Binding of alemtuzumab to these leuko-
cytes leads to elimination via complement and antibody-
dependent cellular cytotoxicity. However, reconstitution of leuko-
cyte subpopulations varies41; B cells recover in approximately 6
months, whereas T cells require more than 1 year.

Treatment-induced humoral autoimmunity is a major concern
associated with alemtuzumab. Graves disease, idiopathic throm-
bocytopenic purpura, and Goodpasture syndrome have been
observed following treatment and may be life threatening without
appropriate clinical management. Graves disease is the most com-
mon iatrogenic autoimmunity and occurs in up to one-quarter of
alemtuzumab-treated patients,38,42,43 most frequently arising 12
to 18 months after starting treatment.43 These humoral autoim-
mune disorders may relate to differences in reconstitution dynam-
ics of B and T cells. Development of autoimmunity may also be
driven by interleukin 21 (IL-21).4 4 Besides autoimmunity,
alemtuzumab-treated patients experienced significantly higher
infection rates.

Rituximab and Ocrelizumab
Rituximab and ocrelizumab have shown robust reduction in MS dis-
ease activity in phase 2 MS trials.45,46 Rituximab is a chimeric mAb
(Figure 1) approved for treatment of B-cell lymphoma and rheuma-
toid arthritis (RA).47 Ocrelizumab is a humanized mAb. Rituximab
and ocrelizumab are directed against CD20, a glycoprotein primar-
ily found on B cells, with the exception of early progenitor (pro-B)
cells and plasma cells. Binding of rituximab and ocrelizumab leads
to rapid B-cell elimination that persists for 6 to 8 months without
significant IgG reduction. Reduced MS activity has been attributed

Figure 2. Chemical Structure of Sphingosine-1-Phosphate and Fingolimod
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to loss of B-cell–mediated cellular immunity, namely B-cell antigen
presentation.48,49

Severe infections have been observed in patients with lym-
phoma receiving rituximab. Further, development of ocrelizumab
in RA and lupus was discontinued owing to occurrence of fatal op-
portunistic infections.50 In addition, PML has occurred in a small
number of patients with RA or lupus treated with rituximab51 and
in rituximab-treated patients with lymphoma.52 So far, no PML cases
have been associated with rituximab or ocrelizumab treatment in
MS, where these agents are tested in monotherapy.

DMTs Targeting Immune Cell Function
The DMTs targeting immune cell function, or immunomodulators,
correspond to treatments that primarily influence functional char-
acteristics of both innate and adaptive immunity. They may affect
multiple signaling pathways that alter cytokine production or effec-
tor cell functions, or both. This class includes 2 small molecules, di-
methyl fumarate (DMF) and laquinimod, and an mAb, daclizumab.
A preparation of DMF, BG-12, was recently approved and laquini-
mod is in late-stage development. BG-12 and laquinimod may have
direct central effects due to passive entry into the CNS.

BG-12
BG-12, an oral treatment, has demonstrated efficacy in 2 phase 3
RRMS trials.53,54 BG-12 was developed from the fumaric acid ester
preparation Fumaderm, containing a mixture of DMF and mono-
ethyl fumarate, used for psoriasis treatment in Germany. BG-12 con-
tains only DMF and is rapidly converted to monomethyl fumarate
(MMF).55

Dimethyl fumarate and MMF activate the antioxidant transcrip-
tion factor nuclear factor (erythroid-derived 2)–related factor 2 (Nrf2)
pathway,56,57 leading to expression of detoxifying enzymes, gluta-
thione S-transferase A2 (GSTA2), heme oxygenase 1 (HO-1), and re-
duced nicotinamide adenine dinucleotide phosphate (NADPH) qui-
none oxidoreductase 1 (NQO1).58 Fumarates, which are electrophilic,
conjugate to glutathione59,60 and can covalently link to essential thiol
groups (nucleophiles) on macromolecules, including Keap1
(Figure 3A), the inhibitor of the Nrf2 pathway.57,62,63 Thus, DMF and
its metabolite, MMF, activate the Nrf2 pathway by “inhibiting the in-
hibitor” (Figure 3B and C).

Dimethyl fumarate preserves neurons and glial cells in experi-
mental autoimmune encephalomyelitis, while MMF protects mu-
rine neurons and human astrocytes from oxidative insult in vitro.57

In contrast, others have reported a neuroprotective effect in vitro
with DMF but not with MMF.64 Treatment of mice with DMF in-
duces anti-inflammatory type II dendritic cells,56 which drive anti-
inflammatory T-cell polarization.56 Similar effects have been ob-
served with MMF.56,65 Dimethyl fumarate has antiproliferative
effects.66 While potential neuroprotective effects of DMF are at-
tributed to Nrf2 activation, whether its anti-inflammatory and im-
munomodulatory properties are dependent on triggering Nrf2 is un-
known. In contrast, some animal studies suggest that DMF may
promote renal tubular hyperplasia and oncogenic activity, also pos-
sibly related to Nrf2 activation.67

Safety data are available from 2 BG-12 phase 3 RRMS clinical
trials53,54 and their combined extension study.68 Its AEs included

flushing, diarrhea, nausea, upper abdominal pain, decreased lym-
phocyte counts, and elevated liver aminotransferases.53,54 Renal AEs
ranged from 4% to 14% and proteinuria (�5%) was the most
common.68 Lymphopenia was observed in 4% to 5% of BG-12–
treated patients vs less than 1% in the placebo group.68 Although
no opportunistic infections were reported in the BG-12 phase 3 trials,
several PML cases have been reported using fumaric acid esters in
psoriasis, including 2 cases using fumaric acid ester monotherapy
where PML was associated with lymphopenia that developed after
initiating fumaric acid ester treatment.69-71 Thus, it may be impor-
tant for physicians to monitor lymphocyte counts when treating pa-
tients who have MS with BG-12.

Some of these AEs may relate to the MOA of DMF and/or its me-
tabolites, which may be increased at higher doses.53,54 Following ad-
ministration, DMF undergoes rapid hydrolysis to MMF and
methanol.57,72 Interestingly, abdominal pain is a common symp-
tom associated with methanol exposure.73,74 Further metabolism
of MMF occurs through the tricarboxylic acid cycle, without involve-
ment of cytochrome P450.67 Exhalation of carbon dioxide is the pri-
mary route of elimination, accounting for approximately 60% of the
DMF dose.67 Drug-protein (eg, Keap1) adducts75 may be respon-
sible for liver enzyme elevations that have been reported for BG-12.54

Flushing is thought to be attributed to release of prostaglandins caus-
ing local vasodilation.76 Recently, bardoxolone methyl, an Nrf2 ac-
tivator, was being advanced for treatment of chronic diabetic
nephropathy.77 However, its development was halted owing to
deaths in the phase 3 trial testing its efficacy. Whether bardoxo-
lone methyl toxicity is related to its activation of Nrf2, its structure,
or its metabolites is not clear.

Laquinimod
Laquinimod, a quinolone-3-carboxamide, is an orally active immu-
nomodulator that appears to have more pronounced beneficial ef-
fects on disease progression and brain atrophy than on clinical and
radiological markers of inflammation in RRMS.78,79 Laquinimod is de-
rived from linomide (Figure 4), whose development in MS was aban-
doned after occurrence of fatal serositis and myocardial infarction.80

In evaluation of the structure-activity relationship, quinolone-3-
carboxamide compounds (>60) were designed, synthesized, and
evaluated in MS models.81 Individual modifications to the quino-
lone ring or carboxamide affected efficacy and safety, respectively.
Laquinimod, containing 1 modification in the quinolone and 1 in the
carboxamide, exhibited the best safety and efficacy profile81 and has
since been developed for treatment of MS, Crohn disease, and lu-
pus. Laquinimod affects the peripheral immune system and acts
within the CNS. Its targets include innate immune cells, including
monocytes and dendritic cells, which function as antigen-
presenting cells. In experimental autoimmune encephalomyelitis,
laquinimod induces anti-inflammatory antigen-presenting cells,
which then downregulate proinflammatory Th1 and Th17 T cells and
promote development of regulatory T cells.82 Glial cells, including
astrocytes and microglia, are CNS targets. Laquinimod treatment re-
duced CNS invasion of inflammatory monocytes and prevented de-
myelination and subsequent axonal loss in rodents by downregu-
lating NF-κB signaling as well as proinflammatory cytokine and nitric
oxide production in astrocytes.83-85 Laquinimod treatment of pa-
tients with MS was associated with elevation of brain-derived neu-
rotrophic factor.86
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Laquinimod was studied in 2 phase 3 trials using annualized re-
lapse rate reduction as its primary end point. Because of its more
pronounced beneficial effect on disability progression, a third trial
is being conducted using disability as its primary end point. Safety
data from the first phase 3 trials demonstrated that laquinimod was
well tolerated and not associated with serious AEs; notably, serosi-
tis and myocardial infarction were not observed. Laquinimod un-
dergoes slow hepatic metabolism, which may correlate with tran-

sient transaminase elevation seen in 5% of laquinimod-treated
patients compared with 2% in placebo-treated patients.

Daclizumab
Daclizumab is a humanized nondepleting IgG1 mAb that demon-
strated promising results in small pilot MS studies87,88 and in a phase
2 trial testing addition of daclizumab to interferon beta.89 Two phase
2b-3 studies are under way to evaluate clinical end points.90

Figure 3. Methylfumarates Promote Activation of the Nrf2 Pathway via Regulation of Keap1, the Nrf2 Inhibitor
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A, Methylfumarates are electrophiles that covalently bind the nucleophilic thiol
group (-S-H) of Keap1 residue Cys151.57 Two products can be generated
depending on which carbon of the π bond is conjugated. DMF indicates
dimethyl fumarate; MMF, monomethyl fumarate. B, In the absence of MMF,

Keap1 binds Nrf2, promoting its ubiquitylation and consequent degradation.61

ARE indicates antioxidant response element. C, On covalent binding of MMF to
Keap1, interaction between Keap1 and Nrf2 is disrupted. This stabilizes Nrf2,
which permits it to bind the ARE and promote gene transcription.
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Daclizumab is directed against the high-affinity α subunit (CD25)
of the IL-2 receptor, which is expressed on activated T cells. Inter-
estingly, daclizumab does not block T-cell proliferation.91 Instead,
beneficial clinical and radiological measures during MS treatment
were associated with expansion of regulatory CD56+ (bright) natu-
ral killer cells.91 No specific AEs emerged from addition of dacli-
zumab to interferon beta,89 although liver enzyme elevations and
cutaneous reactions were observed.

DMTs Targeting Immune Cell Replication
The recognized role of lymphocytes in MS pathogenesis has pro-
vided the foundation for advancing drugs that inhibit their expan-
sion. In this class, mitoxantrone hydrochloride and teriflunomide are
agents approved for MS treatment that target DNA.

Mitoxantrone
Mitoxantrone is an anthracenedione approved for treatment of rap-
idly evolving relapsing or secondary progressive MS.92 It is an anti-
neoplastic agent used for treatment of metastatic breast cancer,
acute myeloid leukemia and non-Hodgkin lymphoma.

Mitoxantrone is an inhibitor of topoisomerase II93 and can in-
tercalate into double-stranded DNA. Mitoxantrone affects all pro-
liferating cells and is therefore nonselective, although it appears to
inhibit B cells more than T cells. Like the related anthracycline che-
motherapeutics, mitoxantrone is associated with dose-dependent
cardiotoxic effects.94 Initially, the recognized risk of therapy-
related acute leukemia in MS treatment was 0.25%, but 10 years af-
ter mitoxantrone approval, this risk approached 1.0%.94 This in-
creased risk of therapy-related acute leukemia provides another

example underscoring the importance of vigilant postapproval safety
monitoring. Because of concerns for cardiotoxic effects and therapy-
related acute leukemia, use of mitoxantrone for MS is generally con-
fined to second- or third-line treatment.

Teriflunomide
Teriflunomide is an oral agent that demonstrated efficacy in phase
3 clinical trials for treatment of RRMS95 and was recently approved
in the United States. Teriflunomide is the active metabolite of leflu-
nomide (Figure 5), a DMT licensed for treatment of RA.96 Teriflu-
nomide inhibits mitochondrial dihydroorotate dehydrogenase, an
enzyme used for de novo synthesis of pyrimidine nucleotides in pro-
liferating cells. However, teriflunomide does not inhibit the salvage
pathway used by resting cells.97

The AEs associated with teriflunomide include lymphopenia, alo-
pecia, elevated liver enzymes, elevated blood pressure, and nau-
sea. Leflunomide and teriflunomide are considered to be terato-
genic in humans and are therefore contraindicated in pregnancy.98

Teriflunomide can also penetrate into breast milk.99 As lefluno-
mide treatment of RA is associated with elevated risk of tuberculo-
sis, purified protein derivative testing is recommended before com-
mencing teriflunomide treatment in patients with MS.99

Teriflunomide undergoes extensive enterohepatic recircula-
tion, leading to long-term exposure of the liver to high concentra-
tions that may result in hepatotoxic effects,100 an important safety
issue with leflunomide in RA101,102 and teriflunomide in MS.99 As a
consequence of its enterohepatic recycling, substantial time is re-
quired to achieve steady-state plasma concentrations of terifluno-
mide. The extended 10-day half-life100 is of potential clinical rel-
evance in case of serious AE or pregnancy, when rapid drug
elimination is necessary. In this context, wash-out procedures have

Figure 4. Chemical Structure of Linomide and Laquinimod

LaquinimodLinomide

NN

N N

OO

O OOHOH CI

Figure 5. Chemical Structure of Leflunomide and Teriflunomide

TeriflunomideLeflunomide

O O

OH

F F

F

F

F

F

O

N N

N
H

N
H

Clinical Review & Education Review Therapeutic Decisions in Multiple Sclerosis

E6 JAMA Neurology Published online August 5, 2013 jamaneurology.com

Downloaded From: http://archneur.jamanetwork.com/ by a University of California - San Francisco User  on 08/30/2013



been developed involving administration of cholestyramine or ac-
tivated charcoal to prevent enterohepatic recirculation. Although ge-
netic polymorphisms of cytochrome P450 isoforms have been as-
sociated with AEs from leflunomide,103 cytochrome P450 may have
a limited role in teriflunomide metabolism.

Discussion
With introduction of several new MS medications, treatment deci-
sions are becoming more complex. Whereas efficacy remains para-
mount, choosing new agents necessitates careful consideration of
other characteristics, including MOA, duration of effect (ie, pharma-
codynamics), and potential risks. In this article, we have classified DMTs
into 4 categories based on their ability to (1) inhibit cell trafficking, (2)
promote immune cell depletion, (3) influence immune function, or (4)
inhibit cell replication. While we have provided a framework, it is im-
portant to recognize that each category is not mutually exclusive.
Agents that reduce lymphocyte proliferation may induce immune
modulation and vice versa.66,104 Nevertheless, categorization of
agents with similarities can help us anticipate specific AEs of newer
agents. In this regard, it is important to recognize that natalizumab
and efalizumab, which are selective adhesion molecule inhibitors and
therefore block lymphocyte trafficking, are both associated with PML.
While newer S1P agonists (eg, BAF312 and ONO-4641) selectively ac-
tivate S1P1 receptors on lymphocytes and reduce trafficking, these
agents also bind the S1P1 receptors expressed by cells directing atri-
oventricular conduction and therefore, like fingolimod, can be asso-
ciated with some level of bradycardia. A potential hazard of DMTs like
mitoxantrone and teriflunomide, which interact with DNA or inhibit
DNA metabolism, respectively, is that such agents may affect DNA
within stem cells and/or germ cells.94,99

Agents specific for one molecular target or immune pathway
may have pleiotropic effects. While the intended mechanism of a
given DMT may shift immune balance favorably for one disease, it
may have paradoxical activity in others. Tumor necrosis factor re-
ceptor antagonists are widely used for RA and were considered for
MS therapy until their use was associated with increased risk of CNS
demyelination. Although T- and B-cell depletion by alemtuzumab is
associated with potent therapeutic effects in MS, its use promotes
humoral autoimmunity targeting the thyroid and, more rarely, plate-
lets, kidney, or lung. Whether this iatrogenic autoimmunity relates
to distinct kinetics of T- and B-cell reconstitution or abnormal T-cell
cytokine secretion is not clear. Prolonged lymphopenia after alem-
tuzumab treatment may be an important consideration when using
other agents sequentially. Specifically, should one wait until there
is full reconstitution of both B cells and T cells prior to treatment with
another agent? Similarly, if a patient does not respond to fingoli-
mod, one may consider delaying sequential treatment until the fin-
golimod-associated lymphopenia resolves. Interestingly, pro-
longed lymphopenia and associated immunosuppression, rather
than concern related to its clinical benefit in MS, probably halted de-
velopment and use of cladribine. When treating MS with newer
agents, we may need to think beyond our next therapy.

Physicians who treat MS will need to pay particular attention to
metabolic properties when prescribing certain newer agents. In con-
trast to interferons (natural endogenous proteins) and glatiramer ac-
etate (a polypeptide-based agent), newer oral therapies are syn-
thetic organic molecules and may be metabolized and excreted
differently. Teriflunomide undergoes prolonged hepatobiliary cir-
culation; in certain situations (eg, pregnancy or AE) it may be nec-
essary to accelerate teriflunomide elimination. Metabolites may be
active therapeutically and also responsible for adverse effects. Di-
methyl fumarate is rapidly metabolized to MMF, considered the pre-
dominant bioactive form responsible for Nrf2 activation. As metha-
nol is produced in metabolism of DMF to MMF, methanol or other
DMF metabolites could possibly contribute to its adverse effects.

With introduction of new agents that use different MOAs, one
can envisage combining MS medications that may act in an addi-
tive or synergistic manner.105 Although this is a worthy goal, there
are practical concerns. First, to establish that 2 effective drugs are
more efficacious together than either one alone may require enroll-
ing large numbers of patients. Second, as the price of many MS agents
increases, it may be unreasonable to consider the added cost in com-
bination. In general, one should be cautious when combining phar-
macological agents as their metabolism may interfere with one an-
other and further paradoxical effects can occur. In this regard, clinical
trials have suggested that widely used cholesterol-lowering statins
may interfere with the efficacy of interferon beta,106,107 and it is pos-
tulated that this potential antagonistic effect relates to their oppos-
ing activity on the proinflammatory signaling molecule STAT1.108

Surrogate markers that associate risk of adverse effects, or re-
sponse, to DMTs are particularly helpful in clinical practice. As JC vi-
rus antibody–positive patients have increased risk of PML during na-
talizumab treatment, anti–JC virus seropositivity has become an
important biomarker for stratification of this risk. Serum IL-21 lev-
els could be considered to estimate risk of thyroid autoimmunity in
alemtuzumab-treated patients. Stratification may include gene poly-
morphisms. For example, ABC-transporter gene polymorphisms have
been associated with response to mitoxantrone.109

In stark contrast to the excitement surrounding our increasing
repertoire of treatments for RRMS, the paucity of useful agents for
progressive MS is sobering. Thus far, our successes primarily target
the peripheral inflammation characterizing RRMS, but not the CNS-
resident inflammatory and neurodegenerative processes of pro-
gressive MS. Hopefully, this therapeutic gap will be breached through
better understanding of MS progression, refining our clinical and
imaging metrics of MS progression, and testing established and novel
agents with potential antioxidative and neuroprotective MOAs.

While no drug to date cures MS, it is clear that major advances
have been made in therapeutics of RRMS. However, several current
drugs have serious, sometimes life-threatening toxic effects. Al-
though the understanding of mechanisms underlying DMT toxicities
is incomplete, it is important to develop this knowledge to minimize
risk to patients and to ensure that future therapies have the most ad-
vantageous benefit to risk profiles. Recognizing the individual classi-
fications of DMTs described here may be beneficial when consider-
ing use of such agents sequentially or eventually in combination.
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